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Mesoscopic theory of the viscoelasticity of polymers
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~Received 13 October 1998; revised manuscript received 8 June 1999!

We have advanced our previous static theory of polymer entanglement involving an extended Cahn-Hilliard
functional, to include time-dependent dynamics. We go beyond the Gaussian approximation, to the one-loop
level, to compute the frequency dependent storage and loss moduli of the system. The four parameters in our
theory are obtained by fitting to available experimental data on polystyrene melts of various chain lengths. This
provides a physical representation of the parameters in terms of the chain length of the system. It is shown that
the parameters chosen describe the crossover from an unentangled to an entangled state. The crossover is
characterized by a dramatic increase in a time scale appearing in the theory, analogous to critical slowing down
in phase transition theory. This result should stimulate more detailed experiments in this regime to test this
concept.@S1063-651X~99!07809-5#

PACS number~s!: 61.41.1e, 83.10.Nn
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In a previous paper, we developed a static field theory
polymer entanglement@1#, in which we introduced a nonlo
cal attractive term, in addition to the usual excluded volu
term, that models resistance to the motion of polymers du
entanglement. Starting with this energy functional, we w
able to use renormalization group techniques to describe
onset of entanglement as the average molecular weigh
increased to a critical value. The onset of entanglement
described as a cross-over phenomenon, characterized
parameter which plays the role of a diffusion constant, go
to zero as the transition point is approached. This was in
preted as an indication of critical slowing down.

There have been several numerical approaches devel
to understand the viscoelastic response of polymers@2–4#. It
is of interest to see whether an alternative theory of v
coelasticity of polymers using continuum concepts can
developed. Our previous theory, being static in natu
clearly needs to be extended if one is to study the tim
dependent response of polymeric systems. The chief pur
of this paper is to lay down the foundations of a tim
dependent field theory of entangled polymers through a c
parison with experimental results on the linear viscoela
response of polymer melts. In so doing we have probed
time-dependent approach to entanglement of polymeric
tems, as the molecular weight is increased to a critical va
The onset of entanglement is analogous to dynamic crit
phenomena, where the characteristic frequency scales to
as the transition is approached. This is an aspect of the o
of entanglement which deserves further investigation.

The time-dependent internal energy functionalU which
extends our previous static theory@1# can be written down in
a straightforward manner in terms of an energy densityu:

U5E d3sE
2vm

vm dv

2p
u~s,v!, ~1!

bu5c~s,2v!~2 iv!c~s,v!1S a

A2
D ¹W sWc~s,2v!•¹W sWc~s,v!

1S a2

2 D c~s,2v!c~s,v!

2S a4

2p D E d3s8c~s,2v!
exp~2dus2s8u!

us2s8u
c~s8,v!
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wherec is the number concentration of the polymer stran
andd25A2a, k, is Boltzmann’s constant, andT is the abso-
lute temperature. The model is an extension of the stand
Cahn-Hilliard approach@6#. a plays a role analogous to tha
of a diffusion constant. The third term in the equation rep
sents the standard excluded volume interaction. The fi
nonlocal attractive term represents the fact that when p
mers become entangled, there will be in general a resista
to their movement. Similar approaches can be found in
literature, where authors have taken activation energie
represent entanglement@3#. The form of our interaction term
is novel, however, and we have discussed in the previ
paper@1# the rationale for the manner in which the parame
a appears in the model is as given in that paper, sinc
leads to a number-preserving Euler-Lagrange equation.
worth noting that standard treatments involve just the
cluded volume term and are restricted to the static ca
whereas we have considered here an extension to the t
dependent case as well. The limits on the frequency inte
6vm indicate an inverse~maximum! time scale which char-
acterizes the system. The first two terms on the right-h
side of Eq.~1! by themselves yield the diffusion equation
the mean-field approximation in the limit thatvm→`. The
frequency and space coordinates in the equation are dim
sionless, the scales chosen beingvc andl, respectively.

To summarize, the model is represented by four para
eters viz.,vc ,vm ,l,a. The first two represent~inverse! time
scales.vc

21 will be shown to scale as DeGenne’s tube r
newal timet t in the entangled limit.vm

21 will be shown to be
related, but not identical to the terminal time beyond whic
the system starts behaving as a fluid, rather than an entan
polymeric system@5#. l is a characteristic interaction lengt
scale, and given that we have here a continuum theory
cannot be less than the length of a monomer, since the th
cannot represent molecular-level dynamics, as it is desig
to describe physics at a longer length scale. The dimens
less parametera can be written asD/@l2vc#, whereD is the
diffusion constant. Bothl andvc could possess a molecula
3432 © 1999 The American Physical Society
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PRE 60 3433BRIEF REPORTS
weight dependence of their own, so thata can display a
dependence on molecular weight different than the sca
behavior ofD.

Since we wish to study polymer melts undergoing sh
experiments, where they are in contact with an energy re
voir ~at constant temperature!, the energy which is conserve
is the Helmholtz free energyA5U2ST @7#, S being the
entropy andT the temperature. The entropy is given appro
mately as@8#

S5E d3sE
2vm

vm dv

2p
s~s,v!, s~s,v!'c~s,v!ln@c~s,v!#,

~11c8!ln~11c8!'c81
c82

2
2

c83

6
1

c84

12
. ~2!

The last of these equations indicates an expansion aro
l23, which is identical to one in the units we have chos
The linear terms will be ignored following convention, a
they can be absorbed into the chemical potentialm, required
for number conservation. In the mean field approximati
m[0. In what follows, we shall drop the primes on the nu
ber concentration variable.

The goal of this communication is to compute the line
viscoelastic response of a polymeric system. This can
done following closely the analysis in our previous paper@1#,
to obtain an expression for the frequency-dependent st
s(v):

s~v!52 ivCS~k50,v!e~v!,

C5S kT

vcl
3D , ~3!

whereS(k,v) is the two-point correlation function for th
system. Note that since we chose to take temporal Fou
transforms with respect to exp(2ivt), our sign convention in
the first of Eqs.~3! is opposite that in standard literature@5#.
In generalS(k,v) is given by

S~k,v!5@S 0
21~k,v!2S~k,v!#21,

S0~k,v!5@2 iv1s0
21~k!#21,

s0~k!5@11A2ak212a2k2/~11A2k2/a!#21

'~11ak2!21,

a52A2a, ~4!

where as usualS denotes the self-energy. From Eq.~4!, we
see thata plays the role of a diffusion constant. But bearin
in mind the discussion below Eq.~1!, we expect its depen
dence on molecular weight to be different than the conv
tional diffusion constantD, due to the manner in which w
have scaled our variables.

From Eqs.~3! and~4!, we see that we need to evaluate t
correlation function in the long wavelength limit. We ca
perform this calculation using a perturbation expansion w
respect to the nonlinear terms, using standard methods
field theory. These are elementary extensions of the meth
detailed in Ref.@1#. The vertices we obtain from Eq.~2! are
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depicted in Fig. 1@9,10#. It is easy to show that the only
surviving lowest order diagram is the setting-sun diagr
Fig. 2, whose contribution can be shown analytically to b

S2b~v,k50,vc ,vm!

5
1

4E dv8

2p E d3k

~2p!3
S0~k,v8!S0~k,v2v8!

5
Aiv/vc21

32p2a3/2 H lnF ~v/21vm!

~v/22vm!

~3v/22vm!

~3v/21vm!G J .

~5!

Here v is the frequency at which the system is bei
sheared. In order to obtain the final expression for the s
energy in the long wavelength limit, we first performed t
frequency integral. Next, to perform thek integration, we
used the method of contour integration, taking care to dis
the contour to avoid the branch cut implied by the logari

FIG. 1. ~a! is a pictorial representation of the cubic term inA.
Each leg corresponds to a factor ofc, the field. The intersection o
the three legs symbolizes a factor ofg51/6, the coupling constant
~b! is a pictorial representation of the quartic term inA. A factor of
21/12 is to be inserted at the intersection.

FIG. 2. This figure~the setting-sun diagram! represents the only
lowest order nonvanishing contribution and arises from the cu
interaction term in the Free energyA @see Eq.~2!#.
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3434 PRE 60BRIEF REPORTS
mic behavior of the integrand ink space. Then the method o
residues yields the final expression in Eq.~5!.

In the zero frequency limit the viscosity is given by

h05 lim
v→0

v21 Im@2 ivCS~k50,v!#[C. ~6!

We have four parameters in the theory, viz.,l, a, vm ,
and vc . To compare our theory with experimental resul
we began by noting that Onogiet al. @11# have obtained
values of the zero shear viscosityh0 as a function of the
molecular weightM for polystyrene melts. ForM.30 000,
their data yieldsh0;M3.7, consistent with other data in th
literature. ForM<30 000,h0;M 21. We parametrized thei
viscosity data, and used it as a constraint through Eq.~6!, to
fit data on the storage moduli of polystyrene melts with a l
polydispersity~a few percent!, and a fairly wide range of
molecular weights, from 8900 to about 580 000@11#, utiliz-
ing Eqs.~3!–~5!. Thus, while we can choose eitherl or vc
independently, the other is determined automatically. T
procedure automatically guarantees that the zero shear
cosity obtained from our theory satisfies conventional sca
laws. In doing these fits, we also ensured that the length s
was chosen to be no less than a few Å, which is what
length of the polystyrene monomer (CH22COH) must be.
Twelve sets of data are shown in Fig. 3, ranging from low
high molecular weight samples. The fits are good forM
>29 000, for v<1, and deteriorate for lower moelcula
weights. The plateaus indicate the rubbery phase of the
tem. Our previous paper applies in this region@1#. At the
higher end of the frequency range~high strain rates!, the
stress is much higher, which could be interpreted in term
inertia as the system starts to be strained. For frequen
below the plateaus~low strain rate!, one might say that the

FIG. 3. This plot shows a comparison of our theory~solid line!
with the experimental data by Onogiet al. on polystyrene melts.
The comparison is fairly good for highM, and to deteriorates as th
molecular weight decreases. The plateaux indicate the rubber
gime for each sample. Note that L18[581,000, L19[513,000,
L5[351,000, L22[275,000, L15[215,000, L27[167,000, L37
[113,000, L16[58700, L34[46900, L14[28900, L12[14800,
and L9[8900. The data are labeled as done originally by On
et al. The plot is log-log, as a function of frequencyv, to the base
10.
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polymers eventually begin to disentangle, causing the st
to start decreasing precipitously.

While it is true that the parameters in our theory had to
chosen to get the best fit with data, subject to some c
straints, we find it impressive that the function given in E
~5! is such that it provides the correctform for the storage
modulus. In this sense, our theory has captured the esse
aspects of the linear viscoelasticity of polymer melts. Fro
the values obtained for the four parameters, we were abl
perform a least-squares fit, yielding the following represe
tations:

a'2.43310218M2.3 ~dimensionless! ;M ,

vm'1.113104M 22.3~s21! ;M<33104,

vm'1.0731028 s21 ;M.33104,

l520 Å ;M<5.873104,

l54 Å ;M.5.873104. ~7!

Note that apart froma (;a), the other two parameter
have different scaling forms, depending on whether the s
tem is entangled, or unentangled~as a function ofM ). In the
fitting process, we found that adjustingvm served to modify
the shape of the storage modulus in the low frequency
gime. In this sense, it is related to the terminal strain r
below which the system behaves as a fluid rather than
entangled system. It turns out thatvm ranges from
10210 s21 in the high-M region to 1028 s21 in the low-M
regime. Adjustingvm yields the experimentally determine
terminal strain rate which follows the usual inverse cub
scaling law@11# as a function ofM. The value ofl is of the
order of a few Å in accordance with the earlier discussio
The fourth parametervc is determined froml using Eq.~6!.
Notice that the ranges ofM for which the representations o
l are different, is not the same as forvm . We shall discuss
the consequences of this below.

The advantage of our theory is that while reptation the
is restricted to the regime of highly entangled systems~high
M !, and uses mean-field concepts such as a preformed
we can compute the effect of fluctuations using Feynm
diagrams. Now, Onogiet al. @11# estimate that the onset o
entanglement takes place at aboutM530 000. There is a
curious signature of this crossover to entanglement wh
arises out of our theory, besides the vanishing of the plat
in the storage modulus as a function of frequency. And t
signature is a phenomenon analogous to critical slow
down in the theory of second order phase transitions. By
we mean that a plot ofvc as a function of the molecula
weightM appears to display a minimum in the neighborho
of M;30 000. On either side of this minimum, of course,vc
will be higher. The partial evidence we have found for th
phenomenon is displayed pictorially in Fig. 4, which is a p
of the characteristic frequencyvc versusM.

The functional dependence ofvc is determined from Eq.
~6!, once l is chosen. The unentangled and entangled
gimes are clearly visible on the log-log plot as straight li
segments with slopes ofM 21 and M 23.7, respectively.l is
constant in each of these regimes. Thusvc;M 23.7 in the
entangled regime. On this basis, and using Eq.~6!, we iden-
tify vc

21 with de Genne’s tube renewal timet t in the en-
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tangled regime. The two dynamical regimes are separate
an interval which we associate with the onset of entang
ment, wherevc dips rather dramatically asM decreases
from a value of about 300 s21, to a few Hz, for two samples
with M546 900 and 58 700. If there were data available
the range ofM530 000 toM546 900, one might be able t
resolve the minimum invc . We attempted adjusting the pa
rameters to avoid thisanomalousbehavior, but could only do
so for the longer sample. But that causesvc to rise to about
3425 Hz, which begs the question why the time scale for
sample should be much smaller than that forM528 900,
which lies in the unentangled regime. The anomalous beh
ior in Fig. 4 can be traced to the fact that the experimen
data for these two values ofM cut across the curves fo
higher M samples. The dramatic increase in the~reptation!
tube renewal timevc

21 in the intermediate molecular weigh
regime is an indication of critical slowing down, which w
anticipated in our earlier static theory@1#. Our results should
stimulate further experiments in this regime in order to e
sure the validity of this concept.

FIG. 4. This plot shows the behavior ofvc as a function of the
molecular weightM. The unentangled and entangled states are
noted by straight lines on this log-log plot with slopes of21 and
23.7, respectively. An intermediate region, where entanglem
sets in, is marked by a curiously low value ofvc , which is a
signature that the dynamics of the system are slowing down trem
dously.
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As advertised earlier, the dependence ofa on M is differ-
ent than that of the true diffusion constantD. The reason is
that a is proportional toa[Dl22vc

21 , and from our fits,
D;M 21.3 in the high-M regime. This scaling deviates from
DeGenne’s inverse quadratic law, and is due to the exp
mental scalingh0;M 2p, with p closer to 3.7 than the oft-
quoted value 3 to 3.4. The low value of the diffusion co
stant which we obtain agrees fairly well with Graessley
formula @5#, which yields D;O(10218) cm2 s21 for M
563105. In the low M regime, D;M 14/3, which is not
what one would expect. This occurs because our theory d
not apply in the lowM regime, as we were unable to g
reasonable fits in that regime.

As one might perhaps expect, the entropy terms in
energy functional have a dominant effect on determining
linear viscoelastic behavior of polystyrene melts. The non
cal attractive term, which models the resistance to the mo
of entangled polymers has a less pronounced effect on lin
viscoelasticity. This is consistent with our earlier calcu
tions in the static regime@1#, where we found that the non
local attractive term has a profound effect on determining
renormalized diffusion constant than the elastic moduli. W
will tackle the frequency dependence of the renormaliz
diffusion constant in future work.

With these parametric representations, we were also
to compute the loss moduli for the samples. The curves g
a reasonable but only an average fit for the various samp
In other words, the loss moduli obtained through our pro
dure was not very sensitive to the parameters we obtain
Nevertheless, we note that this is an improvement over
standard reptation model approaches, which give a null
modulus@5#.

In this paper we have presented a field-theoretic analy
including the effect of fluctuations, of the data of Ono
et al. @11# on the storage moduli of polystyrene melts for
wide range of molecular weights, and we find that analog
to dynamic critical phenomena@12#, the onset of entangle
ment is characterized by critical slowing down. Our res
should stimulate further experiments in this regime in ord
to ensure the validity of this concept.

This research was supported by U.S. Department of
ergy Contract No. W-7405-ENG-36 under the aegis of
Los Alamos National Laboratory LDRD polymer aging D
program.
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