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Mesoscopic theory of the viscoelasticity of polymers
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We have advanced our previous static theory of polymer entanglement involving an extended Cahn-Hilliard
functional, to include time-dependent dynamics. We go beyond the Gaussian approximation, to the one-loop
level, to compute the frequency dependent storage and loss moduli of the system. The four parameters in our
theory are obtained by fitting to available experimental data on polystyrene melts of various chain lengths. This
provides a physical representation of the parameters in terms of the chain length of the system. It is shown that
the parameters chosen describe the crossover from an unentangled to an entangled state. The crossover is
characterized by a dramatic increase in a time scale appearing in the theory, analogous to critical slowing down
in phase transition theory. This result should stimulate more detailed experiments in this regime to test this
concept[S1063-651X%99)07809-5

PACS numbd(s): 61.41+e€, 83.10.Nn

In a previous paper, we developed a static field theory of 1
polymer entanglemertl], in which we introduced a nonlo- B==
cal attractive term, in addition to the usual excluded volume
term, that models resistance to the motion of polymers due to
entanglement. Starting with this energy functional, we wergyherec is the number concentration of the polymer strands
able to use renormalization group techniques to describe the,q 52— |24, k is Boltzmann’s constant, aris the abso-
onset of entanglement as the average molecular weight e temperature. The model is an extension of the standard
|ncree}sed to a critical value. The onset of entanglement Wa8 shn-Hilliard approach]. a plays a role analogous to that
described as a cross-over phenomenon, characterized byo'Iaa diffusion constant. The third term in the equation repre-

parameter which plays the role of a diffusion constant, goin . | )
to zero as the transition point is approached. This was inte%ents the standard excluded volume interaction. The final

preted as an indication of critical slowing down nonlocal attractive term represents the fact that when poly-

There have been several numerical approaches develop8%'S necome entangl_eo!, there will be in general a resistance
to understand the viscoelastic response of polyri@eg]. It tp their movement. Similar approaches can pe found in the
is of interest to see whether an alternative theory of visliterature, where authors have taken aCtI.VatIOI’l energies to
coelasticity of polymers using continuum concepts can béepresent entanglemef]. The form of our interaction term
developed. Our previous theory, being static in natureis novel, however, and we have discussed in the previous
clearly needs to be extended if one is to study the timepaper1] the rationale for the manner in which the parameter
dependent response of polymeric systems. The chief purpose appears in the model is as given in that paper, since it
of this paper is to lay down the foundations of a time-leads to a number-preserving Euler-Lagrange equation. It is
dependent field theory of entangled polymers through a comworth noting that standard treatments involve just the ex-
parison with experimental results on the linear viscoelasticluded volume term and are restricted to the static case,
response of polymer melts. In so doing we have probed th@shereas we have considered here an extension to the time-
time-dependent approach to entanglement of polymeric systependent case as well. The limits on the frequency integral
tems, as the molecular weight is increased to a critical value: ¢,  indicate an inversémaximum time scale which char-
The onset of entanglement is analogous to dynamic criticacterizes the system. The first two terms on the right-hand
phenomena., yvhere the charactensnc_frequency scales to zegRje of Eq.(1) by themselves yield the diffusion equation in
as the transition is approached. This is an aspect of the onsgfe mean-field approximation in the limit that,— . The
of entan_glement which o_leserves further Investigation. frequency and space coordinates in the equation are dimen-
e e et oy SIS, the sales chosen begand. respeciey

X ; . To summarize, the model is represented by four param-
a straightforward manner in terms of an energy density . : .
eters viz.,w.,wn ,\,a. The first two represeriinverse time

_f 3 f‘”m do scales.w_ * will be shown to scale as DeGenne’s tube re-
U= | d°s — Uu(s,w), (1) L R

— 02T newal timer, in the entangled limitw,,,~ will be shown to be
related but not identical to the terminal time beyond which
the system starts behaving as a fluid, rather than an entangled
polymeric systenmi5]. \ is a characteristic interaction length
scale, and given that we have here a continuum theory, it
cannot be less than the length of a monomer, since the theory
cannot represent molecular-level dynamics, as it is designed
A ) to describe physics at a longer length scale. The dimension-
_( a ) j Ps'c(s— ) exp(— dls—s |)c(s’ ©) less parametex can be written a®/[\?w.], whereD is the

' |s—¢'| ' diffusion constant. Bothh andw, could possess a molecular

Bu=c(s,—w)(—iw)c(sw)+

%)ﬁgc(s,—w)-ﬁgc(s,w)
2
+ S ets—wie(s o)

2
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weight dependence of their own, so thatcan display a
dependence on molecular weight different than the scaling
behavior ofD.

Since we wish to study polymer melts undergoing shear
experiments, where they are in contact with an energy reser-
Voir (at constant temperatyrghe energy which is conserved
is the Helmholtz free energph=U—ST [7], S being the
entropy andr the temperature. The entropy is given approxi-
mately aq 8]

_ [ o [om Qo ~

S d°s 27_rs(s,w), s(s,w)=~c(s,w)In[c(s,w)],
—wmp (a)

12 C/3 C/4

(1+c)In(1+c')=~c +7_?+E' (2

The last of these equations indicates an expansion around
\ "3, which is identical to one in the units we have chosen.
The linear terms will be ignored following convention, as
they can be absorbed into the chemical potentiatequired
for number conservation. In the mean field approximation,
©=0. In what follows, we shall drop the primes on the num-
ber concentration variable.

The goal of this communication is to compute the linear (b)
viscoelastic response of a polymeric system. This can be . o , ) )
done following closely the analysis in our previous papdr FIG. 1. (a) is a pictorial representation of the cubic termAn

to obtain an expression for the frequency-dependent streé':s"wh leg corresponds to a factor@fthe field. The intersection of
the three legs symbolizes a factor pf 1/6, the coupling constant.

o(): (b) is a pictorial representation of the quartic termAnA factor of
o(w)=—i1wCS(k=0,0)e(w), —1/12 is to be inserted at the intersection.
kT depicted in Fig. 1[9,10]. It is easy to show that the only
= 3/ 3 surviving lowest order diagram is the setting-sun diagram
[ON

Fig. 2, whose contribution can be shown analytically to be

where S(k,w) is the two-point correlation function for the

system. Note that since we chose to take temporal Fourier Y2b(@,k=0,0¢,0m)

transforms with respect to exp(wt), our sign convention in 1¢de’ R

the first of Eqs(3) is opposite that in standard literatJi®]. - _f bl (K, 0" )So(K,0— @)
is i 4) 2m goot = S0t

In generalS(k, w) is given by (2)

S(k,w)=[Sal(k,w)—2(k,w)]_1, B Vio/lw,—1 (024 w,) (Bw/l2— w,,)
= 320277 | " (02— wn) Bel2twon)||”
So(k,0)=[—iw+s5 (k)]
)
— 2 2,2 2 -1
SO(k)_[lJ”/Eak + 202K (1+ 2k le)] Here w is the frequency at which the system is being
~(1+ak?® 1, sheared. In order to obtain the final expression for the self-
energy in the long wavelength limit, we first performed the
a=2.2a, (4)  frequency integral. Next, to perform tHeintegration, we

used the method of contour integration, taking care to distort
where as usual denotes the self-energy. From Ed), we  the contour to avoid the branch cut implied by the logarith-
see that plays the role of a diffusion constant. But bearing
in mind the discussion below E@l), we expect its depen-
dence on molecular weight to be different than the conven
tional diffusion constanD, due to the manner in which we
have scaled our variables.

From Eqgs(3) and(4), we see that we need to evaluate thett. =) (£ ,x")

correlation function in the long wavelength limit. We can
perform this calculation using a perturbation expansion with
respect to the nonlinear terms, using standard methods from FiG. 2. This figure(the setting-sun diagramepresents the only
field theory. These are elementary extensions of the methodéwest order nonvanishing contribution and arises from the cubic
detailed in Ref[1]. The vertices we obtain from E¢R) are interaction term in the Free enerdy[see Eq(2)].
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polymers eventually begin to disentangle, causing the stress
to start decreasing precipitously.

While it is true that the parameters in our theory had to be
chosen to get the best fit with data, subject to some con-
straints, we find it impressive that the function given in Eq.
(5) is such that it provides the correfrrm for the storage
modulus. In this sense, our theory has captured the essential
aspects of the linear viscoelasticity of polymer melts. From
the values obtained for the four parameters, we were able to
perform a least-squares fit, yielding the following represen-
tations:

;/ g - - : a~2.43x 10 8M?23 (dimensionless VM,

L1

0n~1.11xX10°M " 23s™ 1) YM=<3x10%,

L27

~1.07x10°8 s YM>3x10%,
FIG. 3. This plot shows a comparison of our the¢glid line) @m

with the experimental data by Onogt al. on polystyrene melts. A=20AVM<5.87x10%,

The comparison is fairly good for highl, and to deteriorates as the

molecular weight decreases. The plateaux indicate the rubbery re- A=4AVYM>5.87x10" 7
gime for each sample. Note that L1£881,000, L1%=513,000,

L5=351,000, L22=275,000, L15=215,000, L2%167,000, L37 Note that apart frona (~«), the other two parameters

=113,000, L16=58700, L34=46900, L14=28900, L12=14800, have different scaling forms, depending on whether the sys-

and L9=8900. The data are labeled as done originally by Onogitem is entangled, or unentanglébs a function oM). In the

et al. The plot is log-log, as a function of frequenay to the base fitting process, we found that adjustirg, served to modify

10. the shape of the storage modulus in the low frequency re-
gime. In this sense, it is related to the terminal strain rate

mic behavior of the integrand inspace. Then the method of below which the system behaves as a fluid rather than an

residues yields the final expression in E§). entangled system. It turns out thab, ranges from

In the zero frequency limit the viscosity is given by 10719 s7' in the highM region to 10° s~ in the low-M
regime. Adjustingw,, yields the experimentally determined
terminal strain rate which follows the usual inverse cubic
scaling law{11] as a function oM. The value of\ is of the
order of a few A in accordance with the earlier discussion.
The fourth parameten,. is determined from\ using Eq.(6).

We have four parameters in the theory, vix,, @, o, Notice that the ranges dfl for which the representations of
and w.. To compare our theory with experimental results,\ are different, is not the same as fof,. We shall discuss
we began by noting that Onogit al. [11] have obtained the consequences of this below.
values of the zero shear viscosify, as a function of the The advantage of our theory is that while reptation theory
molecular weightM for polystyrene melts. FoM >30000, s restricted to the regime of highly entangled systéhigh
their data yieldsy,~M?37, consistent with other data in the M), and uses mean-field concepts such as a preformed tube,
literature. ForM <30 000, 7o~ M ~1. We parametrized their we can compute the effect of fluctuations using Feynman
viscosity data, and used it as a constraint through(Bgto  diagrams. Now, Onogét al. [11] estimate that the onset of
fit data on the storage moduli of polystyrene melts with a lowentanglement takes place at abddt=30000. There is a
polydispersity(a few percent and a fairly wide range of curious signature of this crossover to entanglement which
molecular weights, from 8900 to about 580 qaa], utiliz- arises out of our theory, besides the vanishing of the plateau
ing Egs.(3)—(5). Thus, while we can choose eitheror w, in the storage modulus as a function of frequency. And that
independently, the other is determined automatically. Thisignature is a phenomenon analogous to critical slowing
procedure automatically guarantees that the zero shear vidown in the theory of second order phase transitions. By this
cosity obtained from our theory satisfies conventional scalingve mean that a plot ofo, as a function of the molecular
laws. In doing these fits, we also ensured that the length scaleeightM appears to display a minimum in the neighborhood
was chosen to be no less than a few A, which is what th@f M~ 30 000. On either side of this minimum, of coursg,
length of the polystyrene monomer (GHCOH) must be. will be higher. The partial evidence we have found for this
Twelve sets of data are shown in Fig. 3, ranging from low tophenomenon is displayed pictorially in Fig. 4, which is a plot
high molecular weight samples. The fits are good kbr of the characteristic frequeney,. versusM.
=29000, for o<1, and deteriorate for lower moelcular  The functional dependence af. is determined from Eq.
weights. The plateaus indicate the rubbery phase of the sy$6), once\ is chosen. The unentangled and entangled re-
tem. Our previous paper applies in this regidd. At the  gimes are clearly visible on the log-log plot as straight line
higher end of the frequency randhigh strain rates the  segments with slopes ofl 1 andM ~37, respectively\ is
stress is much higher, which could be interpreted in terms ofonstant in each of these regimes. Thug~M 37 in the
inertia as the system starts to be strained. For frequenciestangled regime. On this basis, and using B}.we iden-
below the plateauiow strain rat¢, one might say that the tify wc‘l with de Genne’s tube renewal timg in the en-

70=lim o 1 Im[ —i wCS(k=0,w)]=C. (6)

w—0
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10° | | As advertised earlier, the dependencaan M is differ-
- EEE?SSLED ent than that of the true diffusion constdht The reason is
UNENTANGLED \'\ \ that a is proportional toa=D\ 2w_*, and from our fits,
) e \ slope ~-3.7 D~M~13in the highM regime. This scaling deviates from
10" ¢ slope ~ -1 4 s . . .
o \ DeGennes_lnverse q_uadrz_altlc law, and is due to the experi-
I \ mental scalingpy~M P, with p closer to 3.7 than the oft-
&7 \ quoted value 3 to 3.4. The low value of the diffusion con-
10" g’ \ ] stant which we obtain agrees fairly well with Graessley’s
e g* formula [5], which yields D~O(107%%) cn?s™! for M

v
=6x10. In the low M regime, D~M "#2 which is not

what one would expect. This occurs because our theory does
not apply in the lowM regime, as we were unable to get

— reasonable fits in that regime.
Onset of Entanglement As one might perhaps expect, the entropy terms in our
. ‘ energy functional have a dominant effect on determining the
10° 10° 10° 10° linear viscoelastic behavior of polystyrene melts. The nonlo-
M cal attractive term, which models the resistance to the motion

FIG. 4. This plot shows the behavior ef; as a function of the  of entangled polymers has a less pronounced effect on linear
molecular weightM. The unentangled and entangled states are deyiscoelasticity. This is consistent with our earlier calcula-
noted by straight lines on this Iog-log plo't with slopes-el and  tigns in the static regimgl], where we found that the non-
—3.7, respectively. An intermediate region, where entanglemenic| attractive term has a profound effect on determining the
sets in, is marked by a curiously low value @, which is &  ro5malized diffusion constant than the elastic moduli. We
signature that the dynamics of the system are slowing down tremen- . .
dously. vv_|II ta_\ckle the frequency dependence of the renormalized

diffusion constant in future work.

With these parametric representations, we were also able
tangled regime. The two dynamical regimes are separated iy compute the loss moduli for the samples. The curves gave
an interval which we associate with the onset of entangley reasonable but only an average fit for the various samples.
ment, wherew dips rather dramatically abl decreases, |, gther words, the loss moduli obtained through our proce-
from a value of about 300 S, to a few Hz, for two samples ve was not very sensitive to the parameters we obtained.
with M =46 900 and 58 700. If there were data available inye,ertheless, we note that this is an improvement over the

the range oM = 30000 toM =46 900, one might be able 10 - 4arq reptation model approaches, which give a null loss
resolve the minimum .. We attempted adjusting the pa- modulus[5]

rameters to avoid thianomalousehavior, but could only do In thi h d a field-th . vsi
so for the longer sample. But that causgsto rise to about . " t. IS paper we have preser_1te a field-theoretic ana ysIS,
3425 Hz, which begs the question why the time scale for thiénCIUdmg the effect of fluctuatl_ons, of the data of Onogi
sample should be much smaller than that For=28 900 et al.[11] on the storage moduli of polystyrene melts for a

' \yyide range of molecular weights, and we find that analogous

which lies in the unentangled regime. The anomalous beha S
ior in Fig. 4 can be traced to the fact that the experimenta'f0 dynamic critical phenomenfd2], the onset of entangle-

data for these two values o cut across the curves for Ment is characterized by critical slowing down. Our result
higher M samples. The dramatic increase in theptation ~ Should stimulate .fu'rther egperiments in this regime in order
tube renewal timeo_ * in the intermediate molecular weight t0 €nsure the validity of this concept.

regime is an indication of critical slowing down, which we  This research was supported by U.S. Department of En-
anticipated in our earlier static thedry]. Our results should ergy Contract No. W-7405-ENG-36 under the aegis of the
stimulate further experiments in this regime in order to en-Los Alamos National Laboratory LDRD polymer aging DR

sure the validity of this concept. program.
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